Středa 17. července 2024, svátek má Martina
  • Premium

    Získejte všechny články
    jen za 89 Kč/měsíc

  • schránka
  • Přihlásit Můj účet

První český ryze internetový deník. Založeno 23. dubna 1996

KVARKY: Jak se loví kvantové příšerky a proč už jich více nebude 3

diskuse (0)

Drahý Time,

dneska zakončíme naše společné pátrání po kvantových příšerkách. Zatímco co dříve si fyzikové vystačili s aparaturou, která se jim vešla na stůl, dneska se podíváme k zařízením, jejichž rozměry se počítají v kilometrech. Jsou to urychlovače, zařízení, které pomocí elektrických polí urychlují různé druhy částic k rychlostem blízkým rychlosti světla. Cílem je srazit dva svazky těchto částic, případně je vystřelit proti nehybnému terči a potom pozorovat, co se bude dít.

Urychlujeme

S částicemi je to podobné jako se starým porcelánovým prasátkem na spoření. Můžeš dovnitř nahlížet štěrbinou na zádech prasátka, ale když chceš opravdu vědět, co je uvnitř, musíš vzít kladívko a prasátko rozbít. Zatímco dříve vědcům k objevům stačila jenom malá kladívka v podobě alfa a beta částic a našli proton i neutron, když chtěli zkoumat hlubší podstatu, museli sáhnout po větším kladivu. A tím je právě urychlovač, přístroj fungující na podobném principu jako katoda, díky které J.J.Thomson v roce 1897 objevil elektrony.

Když chceš rozhýbat elektricky nabitou částici, kterou může být třeba elektron, proton nebo i ionizovaný atom, zkráceně iont, potřebuješ elektrické pole. V podstatě jsou to dvě elektrody o rozdílném napětí a čím větší napětí, tím vyšší rychlost částic a také vyšší energie. Pak potřebuje druhou složku - magnetické pole, které částice usměrní a nedovolí jim rozletět se do všech stran. První urychlovače, elektrostatické, vznikly krátce před druhou světovou válkou, ale až v 50. letech minulého století se objevili dva hlavní typy - lineární a kruhový.

Ty kruhové dokážou dosáhnout vyšších energií, v současnosti největší urychlovač stojí ve Švýcarsku, nebo spíše pod Švýcarskem a kousek též pod Francií, je to kruh o poloměru skoro 4,3 km.

Objev kvarků

V 60. letech minulého století začali vědci tušit, že proton i neutron zřejmě budou mít v sobě ještě nějakou další strukturu, že to nejsou nedělitelné částice. Právě ve Standfordském lineárním urychlovači (zkráceně SLAC) probíhali experimenty, kdy elektrony sráželi s protony a sledovali, co se stane. Výsledky ukazovaly na to, že elektrony se nesrážejí s protonem, ale až s něčím menším uvnitř protonu. Klíčový rozptylový experiment byl ve SLAC proveden v roce 1968 a jev, který byl pozorován dostal jméno hluboký nepružný rozptyl.

Tou dobou už fyzikové, jak Murray Gell-Man a George Zweig nezávisle na sobě předpověděli výskyt těchto částic a dokázali pro ně vypracovat matematický model (jenom pro zajímavost, je to SU(3) symetrie. Bohužel jejich model byl pozorováním vyvrácen a až další fyzik, Richard Feynman přišel na to, že s elektrony se ve skutečnosti srážely s partony. Vysvětlit parton bude obtížné, jsou to fiktivní částice, kvarky a gluony dohromady, jak to tam všechno díky kvantovým fluktuacím víří a míchá se dohromady. Feynman tedy potvrdil, že v podstatě kvarky existují a Gell-Man jim dal jméno a matematický aparát. Právě za matematiku kolem SU(3) symetri dostal v roce 1969 Nobelovu cenu za fyziku. to když se podařilo objevit předpovězenou částici Ω-, složenou ze tří podivných kvarků.

Kvarky jsou (možná prozatím) částice bez jakékoliv známe vnitřní struktury. Kvarky jsou také jediné nám známe částice, které podléhají vlivům všech 4 základních interakcí (opáčko - gravitace, elektromagnetická síla, slabá a silná jaderná interakce). Kvarky mají elektrický náboj ±1/3, nebo ±2/3 a jejich spin je 1/2 (ano, jsou to fermiony). Protože jsou uvnitř protonu i neutronu 3 kvarky, z toho 2 stejného typu, podle Pauliho vylučovacího principu se musí něčím lišit a to je jejich barva, kterou jsou červená, modrá a zelená, které dají dohromady dají bílou a. Takže v oblasti barvy je potom výsledná směska neutrální. To by byly i dva kvarky, konec konců, ale ještě potřebujeme magnetický moment protonu a na to už nám dva kvarky nestačí, vítězná kombinace je uud.

I kvarky mají svoji rodinu

Nejenom kvarky, nadpis je trochu zavádějící, ale dostává nás konečně k druhé části otázky, proč už těch příšerek nebude více. V rámci našeho poznání a Standardního modelu částic existují tři různé rodiny, které se liší, jak jinak, svoji hmotností. První rodinu známe z běžného provozu, z každodenního života, jsou to elektron, neutrino a kvarku nahoru a dolů. Druhou rodinu známe třeba ze spršek kosmických částic a samozřejmě z urychlovačů, jsou to mion (těžší brácha elektronu), mionové neutrino a kvarky podivný a půvabný. A třetí rodinu, kterou známe už jenom z urychlovačů tvoří tauon (ještě těžší brácha elektronu, je těžší než proton), taunové neutrino a kvarky spodní a svrchní. Tyto nejtěžší částice se vyskytovaly také když byl vesmír opravdu hodně mladý, potom už ne. A nic dalšího, žádnou další rodinu nebo generaci částic neznáme.

Samozřejmě, kvarky se mohou různě kombinovat, mohou být dvojice kvark a antikvark - to jsou mezony, trojice s různými barvami potom tvoří baryony (např. proton, neutron), existují i tetra a penta kvarky - tedy exotické částice ze čtyřech nebo pěti kvarků a antikvarků. Když do baryonů vrazíme podivný kvark, dostaneme hyperony, prostě celou další zoo různých složenin.

Zajímavá je ale historie objevů další kvarků. Podivný kvark je jediný, u kterého není jasné, kdo ho vlastně objevil. Poprvé o něj vědci zavadili, když zkoumali spršky částic z vesmíru, mezony kaony už v roce 1947, jenomže tehdy nikdo netušil, že se jedná o kvarky. A kaony se chovaly podivně, proto Gell-Man zavedl nové kvantové číslo podivnost a za okamžik objevu podivného kvarku se pokládá rok 1968, kdy byly objeveny i kvarky nahoru a dolů.

Za objevy dalších kvarků už vděčíme urychlovačům, půvabný kvark byl objeven v roce 1974 nezávisle na sobě dvěma skupinami fyziků, jednu vedl Samuel Ting a druhou Burton Richter. Říká se tomu listopadová revoluce ve fyzice a znamenalo to definitivní potvrzení hypotézy kvarků. Spodní kvark našli ve Fermilabu v roce 1977, skupinu vedl Leon Lederman. Poslední kvark, svrchní našli v roce 1995 na urychlovači Tevatron. Je zajímavé, že hmotnost svrchního kvarku je podobná jako u atomu wolframu. Tyto objevy mají společnou jednu důležitou věc - předcházelo jim pozorování porušení symetrie různého typu. Symetrii si můžeš představit jako tebe a tvůj obraz v zrcadle a pro fyziku jsou symetrie velmi důležité, stejně jako jejich porušení, ale o tom někdy příště. Jenom právě za objev porušení CP symetrie dostali Nobelovu cenu dva japonští fyzikové, Makoto Kobajaši a Tošihide Maskawa.

Statistika a nepřímá pozorování

Celý tento článek jsme se bavili o tom, že vědci něco našli, ale neřekli jsme, jak to našli. V těch urychlovačích existují přesná místa, kde se sledují srážky částic a jejich výsledky. Celá řada částic má jenom velmi krátkou dobu života, než zmizí, častokrát nacházíme jenom výsledné produkty rozpadů těchto částic. A hlavně těch výsledků musí být celá řada, aby se s jistotou vědělo, že se nejedná pouze o náhodu. Nejlepší na tom je, že můžeš částicovou vědu dělat i doma. Existují programy distribuovaných výpočtů. Jedná se o to, že třeba LHC za dobu svého provozu nasbíral neuvěřitelné množství dat a neexistuje dostatečně silný počítač, který by je v reálném čase analyzoval- Místo toho můžeš pomoci ty, Time, se svým počítačem, když si nainstaluješ program LHC@home a můžeš volnou kapacitu tvého počítače darovat vědě a pomáhat analyzovat data z LHC. Co říkáš, zkusíš to?

Neviditelný pes
17. 7. 2024

Milují vaši psi vodu? Nebo bahýnko?

Aston Ondřej Neff
17. 7. 2024

Nedávná změna vzezření Psa se chystala delší dobu. Do zákulisí nevidím, jen mohu usuzovat, že s...

Ivo Fencl
17. 7. 2024

Bachmač je vylíčením hrdinových prožitků na vojně a odehrává se v podhůří Nízkých Tater na konci...

SÝR ZDARMA
17. 7. 2024

Subjektivní výběr informací vztahujících se k atentátu na Donalda Trumpa z různých zdrojů, neboť...

Lubomír Stejskal
17. 7. 2024

Zní to málo pravděpodobně, ale je to tak. Inspirací pro ostatní může být Ella Waweya, arabská...

Aston Ondřej Neff
15. 7. 2024

Událost vyvolala celosvětovou odezvu. Naši političtí předáci reagují lidsky a věcně, přinejmenším v...

Aston Ondřej Neff
16. 7. 2024

Je až pozoruhodné, jak malou pozornost vyvolalo v našich médiích oznámení Roberta Fica z minulého...

Marian Kechlibar
16. 7. 2024

Ve špionážní klasice Fredericka Forsytha Šakal se nachází scéna, která musela až do včerejška na...

Aston Ondřej Neff
17. 7. 2024

Nedávná změna vzezření Psa se chystala delší dobu. Do zákulisí nevidím, jen mohu usuzovat, že s...

Lukáš Kovanda
15. 7. 2024

Český Green Deal je tu, Fialova vláda ho chce schválit bez pozornosti médií nyní v čase dovolených....

Josef Kopecký
17. 7. 2024

Kabinet Petra Fialy odkládá rozhodnutí o trojici materiálů souvisejících s naplňováním Green Dealu....

vsl Václav Šlauf
17. 7. 2024

Na zabezpečení minimálně jednoho ze svých vozidel jakoby zcela rezignoval prodejce automobilů v...

kh Kateřina Havlická
17. 7. 2024

„Pokud by mi lékaři řekli, že mám nějaký zdravotní problém,“ odpověděl v úterý americký prezident...

Eva Obůrková
17. 7. 2024

Letošní prázdniny na našich hradech a zámcích patří Habsburkům! Zajeďte se podívat do Uherčic,...

ČTK, Lidovky.cz
17. 7. 2024

Starostka Paříže Anne Hidalgová a šéf organizačního výboru olympijských her Tony Estanguet se...

Vyhledávání

TIRÁŽ NEVIDITELNÉHO PSA

Toto je DENÍK. Do sítě jde obvykle nejpozději do 8.00 hod. aktuálního dne. Pokud zaspím, opiji se, zešílím nebo se zastřelím, patřičně na to upozorním - neboť jen v takovém případě vyjde Pes jindy, eventuálně nikdy. Šéfredaktor Ondřej Neff (nickname Aston). Příspěvky laskavě posílejte na adresu redakce.

ondrejneff@gmail.com

Rubriku Zvířetník vede Lika.

zviretnik.lika@gmail.com

HYENA

Tradiční verze Neviditelného psa. Sestává ze sekce Stručně a z článků Ondřeje Neffa - Politický cirkus a Jak život jde. Vychází od pondělka do pátku.

https://www.hyena.cz